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Summary 
A two-step semidirect procedure is developed to accelerate 

the one-step procedure described in NASA TP-2529. For a 
set of constant coefficient model problems, the acceleration 
factor increases from 1 to 2 as the one-step procedure 
convergence rate decreases from +OD to 0. It is also shown 
numerically that the two-step procedure can substantially 
accelerate the convergence of the numerical solution of many 
partial differential equations (PDE's) with variable 
coefficients. 

Introduction 
The iterative procedure developed in reference 1 requires 

only a single application of a fast direct solver (FDS) in 
advancing U" to u"+'. In the present report the following two- 
step iterative procedure is investigated: 

Pw" = - r(@" - h) (7 # 0) (1) 

and 

With the understanding that the notations defined in reference 
1 are used in the present report, the only parameters in 
equations (1) and (2) yet to be defined are w", the 
intermediate iterative variable, and R, an elliptic linear operator 
whose exact form will be chosen to accelerate the convergence. 
With the assumptions that (1) U" - u and w" - w as 
n - + OD, and (2) the inverse of R exists, it may be concluded 
that w = 0 and u is a solution of equation (1-1). (Here, as in 
the following, the equation number (1-1), for example, refers 
to eq. (1) of ref. 1.) 

If one assumes that the computational effort required to 
advance u" ro u"+l with the two-step procedure is twice that 
required with the one-step procedure, the former has no merit 
unless it can achieve a convergence rate at least twice that of 
the latter. Fortunately, for a large class of the operator Q an 
operator R can be found such that the two-step method 
convergence rate is 2 to 4 times that of the one-step method 
convergence rate. Moreover, as will be shown, the higher 
acceleration factor is realized whenever the one-step method 
convergence rate is lower. 

In the section Analysis the convergence of the two-step 
procedure is investigated in a fashion similar to that presented 
in the section Analysis of reference, 1. In the section Local 
Relaxation the results obtained in the section Analysis are 
extended to solve partial differential equations (PDE's) with 
variable coefficients. Finally, in the section Numerical 
Evaluation the two-step method is numerically compared with 
the one-step method by using two-dimensional (2-D) and three- 
dimensional (3-D) test problems. 

Analysis 
In this section the two-step procedure defined in equations 

(1) and (2) is studied by assuming that r is a constant and 

(3) 

where a I ,  b I ,  and c ' are constant coefficients to be determined 
later. Furthermore it is assumed that the operators Q and P 
are those defined in equations (1-3) to (1-5). The central 
difference forms of equations (1) and (2) can be expressed as 

F(WYj) = -rp(u:,j) - hi j ]  

and 

(4) 

respectively. Here G and E respectively, are defined in 
equations (1-8) and (1-9), and 

- 
R(viJdEf. a'(Ax)-2(vi+l + vi-l - 2vij) 

+ C'(Ay)-2(Vij+l + vij-1 - 2vij) 

+ b ' ( 2 A x A y ) - ' ( ~ ~ + ~ ~ + ~  + vi-' j - l  

for any vij. 

This report has been reprinted so that the graphs of figures 1, 2, 4, and 5 are in the correct locations. 
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To study the convergence rate of the iterative procedure 
defined by equations (4) and (9, one notes that equations (4), 
(5 ) ,  and (1-6) imply that 

I 

and 

where eyj is defined in equation (1-11). With the assumption 
that both wyj’s and eyj’s satisfy the periodic and uniqueness 
conditions as given in equations (1-12) to (I-14), a line of 

1 can be used to show that the unique solution eyj to equations 
(7) and (8) is 

I arguments similar to that presented in appendix A of reference 

The only parameter in equations (9) and (10) yet to be defined 
is 

where 

+ 2b’ [ & sin ($)I [ sin (31 cos (s) cos (:)I 
(k=0,1,2 ,...) (K-1); P=0,1,2 )...) (L-1)) 

Note that here, as in the following, the symbol = is used to 
designate a parameter for the two-step procedure in case this 
parameter is different from its counterpart in the one-step 
procedure. 

At this juncture note that equation (9) is identical to equation 
(1-21) except that G(’rP) (7) in equation (1-21) is replaced by 
G(’,‘) (7) in equation (9). Thus for the two-step procedure the 
c%nterpart of equation (1-26) is 

in G ( k 3 ‘ ) ( ~ )  is replaced by the parameter 

where 

Furthermore the only difference between G ( k s P ) ( ~ )  and 
- G ( k 8 p ) ( ~ )  is that the parameter - 

Let 

1::: 1 
a’c’  - ( b y  > 0 
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and 

- def. ftl. a =  
a, 

- ~ d e f . ~ ’  c = -  
CO 

b‘ 
I def. 6 =  

Ja,c, 

A line of arguments which leads to equation (1-B18) can be 
used to show that 

where 

and 

then equations (18) and (I-B18) imply that &, 2 hn > 0. 
As a result one may conclude that (see equations71-27) to 
(1-29)) @T) reaches its minimum - 

when 

With the assumption T = IO, it can be concluded from 
equations (13) and (22) &at (1) M” < 1 and (2) M” 
increases with an increase of g. 

If the coefficients a, b, c, a,, and co; the aspect ratio 
(AylAx);  and the integers K and L are known, the parameter 
C is a function of the coefficients a ’ , b ’ , and c’ . Since the 
c%nvergence rate increases with a decrease of _C, ideally the 
coefficients a ’ , b ’ , and c ’ should be chosen such that is 
at its minimum. Unfortunately this optimization problem is 
too complicated to be solved by a simple analytical technique; 
thus, a simplified version of this optimization problem is 
solved. 

can be considered as a function 
of K and L if the parameters;, b, c, a ’ , b ’ , c’ , a,, c,, and 
(AylAx) are known. In the appendix the existence of 

To proceed, one notes that 

is established for any given set of a, b, c, a ’ , b ‘ , c ‘ , a,, c,, 
and (Ay/Ax) .  Note that in this report and reference 1 
supremum and infimum of a finite set are denoted by Max 
and Min, respectively. On the other hand, supremum and 
infimum of an infinite set are denoted by Sup and Inf, 
respectively. Let 

where A,,, Amin, 6, 8, and C are defined in equations (1-30) 
to (1-32). It is shown in the appendix that (1) g” 2 and 
(2) 2” = 2’ if and only if 

- - 

where I is the 2 x 2 identity matrix, 

Here z0 is the optimal relaxation factor for the two-step 
method: and 

and A an arbitrary positive scalar. In this report the values 
of a ’ , b ’ , and c ’ are determined by using equation (27) with 
the assumption A = 1. Thus, 
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Equation (29) obviously is consistent with equations (1-4) and 

With the coefficients u ' , b ' , and c ' specified according to 
(16). 

equation (29) it is shown in the appendix that 

and 

lim h n = l  
K.L-+fm - 

Thus, in the limit of K and L- +oo the parameters f and 
- Go, respectively, approach 

- 
- 

2 def. 7 =  
= - E ' + 1  - 
and 
. E ' - 1  

= - c * + 1  c1 
G def. = 

- 

(32) 

(33) 

If equations (33), (26), (I-36), and (1-37) are used, it can be 
shown that 

G' = P(G*)~Z'. 
2 - (G*)2 - - 

Since 

4G' 
. , 2 > 0  

dp - -- 
dG' [ 2 - ( G )  ] 

(34) 

(35) 

for 1 > G' > 0, one concludes that p is a simple 
monotonically increasing function of G'. Thus, the same 
value of colao which optimizes G' (see equations (I-39) and 
(1-40)) will also optimize C'. In other words the value of G' 
reaches its minimum 

- - 

4 

when cJao = cia. 
In the limit of K and L- +oo the parameters C and G' 

are the asymptotic error multiplication factors for the one- aGd 
two-step methods, respectively. Assuming that the execution 
of one iteration in the two-step procedure requires twice as 
much computational time as that in the one-step procedure, 
one may conclude that asymptotically the two-step method is 
faster than the one-step method by a factor of 4 if 

G' - = (G*)2t (1 > G' > 0) - 

With the aid of equation (34) one obtains 

Since 

dr 
and 

(1  > x > O )  

lim [ ( x )  = 1 
x-Of 

(39) 

the acceleration factor 4 increases from 1 to 2 monotonically 
as the value of G' increases from 0 to 1; that is, the higher 
value of E is realized whenever the need to accelerate the one- 
step method is greater. (See also fig. 1.) 

In a fashion similar to that described in the section Analysis 
of reference 1, the two-step procedure described in this section 
can be generalized for a space of higher dimension. However, 
it should be noted that in an N-dimensional space (N > 2) the 
generalized version of equation (27) represents only a subset 
of the general solution to the condition g* - -  = _Ca (ref. 2). 

Local Relaxation 
With the technique of local relaxation developed in the 

section Local Relaxation of reference 1, the two-step procedure 
described in the section Analysis can be extended to solve 
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Figure I.-Function (x) = 1 - [In (2 - .?)]/(ln 2). 

PDE’s with variable coefficients (VC’s). Thus, with the aid 
of equations (26) and (32) one concludes that equations (1-47) 
and (1-58) are replaced by 

and 

F(WYj)  
K(WYj )  = 

Ply 

Thus, the VC versions of equations (4) and (5) imply that 

in the two-step procedure. 
Moreover, the VC versions of equations (6) and (29) are 

obtained by substituting the coefficients a’, b‘, c‘, d ’ ,  h‘, 
and E ’ ,  with a;, b;, c;, do, b,, and 2,. For the case when 
the operator Q is a self-adjoint operator defined in equation 
(1-56), these VC versions are modified by replacing d i ,  E,, 
and 6, with pii, ij,, and 0. It should be cautioned that for the 
special case where p, = i j ,  

In other words the extra computational effort required for the 
two-step method is completely wasted, since the convergence 
achieved in one iteration is identical for both the one- and two- 
step methods. Note that a similar situation also arises in the 
solution of the PDE’s with constant coefficients. Let d = P 
and 6 = 0. Then G’ = G’ = 0. In other words the machine 
accuracy solution is obta7ned in one iteration for both the one- 
and two-step methods. Since the parameter ,$ is ill defined at 
G’ = 0 (eq. (37)), the assertion made in the section Analysis 
concerning the advantage of using the two-step method 
apparently is not valid for the special case in which d = E and 

Finally, it is noted that equations (34), (35), and (1-52) to 
6 = 0. 

(1-55) can be used to show that 

(1) M” == G” - = p(Gm) (42) 

(2) For the case in which b, = 0 for all ( i j ]  E +, Gm - 
reaches its minimum 

if and only if c,la,=~&,,, &,. Equation (42) combined 
with equations (34) and (37) suggests that the parameter 

ln[2 - (G”)’] 
4(GOD)dZf. 1 - 

ln[(G”)21 

may be used to predict the numerical acceleration factor 

where O,(n) is defined in equation (I-61), 

Numerical Evaluation 
Initially the test problems used in the comparison of the one- 

and two-step methods involve the constant coefficient finite 
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1 
2 
3 
4 
5 
6 
7 
8 

eq. (52) 

J 
eq. (53) 

difference equations defined by equations 0-6) and (I-8). These 
problems were designed such that many key results of the 
current theoretical development could be tested numerically 
under the most ideal conditions. As a preliminary a line of 
arguments similar to that given in appendix A of reference 
1 is used to obtain the following results: 

(1) Let 

- 
where 'p$') is the complex conjugate of cp$') .  

For the test problems defined in table I the hi j ' s  are chosen 
to meet the conditions (46) and (47). They are given by either 

= cos f;) cos ?+) 
and 

or 

(K-1) (L-1) 
. c ' h i j = O  (47) 

(53) where K 2 2 and L 1 2 are two arbitrary integers. Then u. .'s 
are uniquely determined by equation (1-6) and the following 
auxiliary conditions : 

!J 

The wyj's and uyj's are assumed to satisfy the periodic and 
uniqueness conditions given in equations (48) and (49). 
Moreover, it is assumed that (1) a = c = a,=c, = 1, (2 )  
Ax = Ay = 1/K = 1/L, and (3) the relaxation factors T* and 
T', respectively, are used in the one- and two-step 
Eocedures. Note that equations 0-38) and (I-41) coupled with 
assumption (1) yield 

and 

C ' U i j  = 0 (49) 

T * = T 0 =  1. 
( 2 )  The unique solution to equations (I-6), (48), and (49) 

is explicitly given by 

The only parameter in equation (50) which was not defined 
previously is 

and 

TABLE 1.-DEFINITIONS OF PROBLEMS 1 TO 8 AND VALUES OF KEY PARAMETERS 

[a = c = a, = C, = 1 ,  A x  = Ay = 1IK = 1/L.] 
- 
K= L Problem I hij  -lOgio(Go) 

0.618912 1 
,6031069 
,07484407 
.05903883 
.618912 1 
,6031069 
,07484407 
,05903883 

16 
64 
16 
64 
16 
64 
16 
64 

0.6020600 
.6020600 
.05799195 
.05799195 
.6020600 
.60206oO 
.05799 195 
,05799 195 

1.49 1362 
1.49 1 362 
,2074310 
.2074310 

1.49 1362 
1.491362 
0.20743 10 
0.20743 10 

1.561608 
1.495559 
,2776769 
,2116287 

1.561608 
1.495559 
0.2776769 
0.21 16287 

.875 

.875 
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0 

4 

8 - c 
0 
- 
L 

12 

(55) 

These considerations coupled with other equations given 
previously lead to a simple formula for the residual norm of 
the one-step procedure: 

( K  = L) (56) 

where Go is the parameter defined in equation (1-27). Thus, 
one concludes that in the absence of roundoff error the relation 
between O,(n) and n for problems 1 to 4 are represented by 
straight lines if the one-step method is used. The slope of each 

straight line is -loglo(Go). 0 
Similarly by using the fact that 

4 8 12 16 20 
n 

Figure 2.-Convergence histories of problems 1 and 2. 

one concludes that for the two-step procedure 

Thus, in the absence of roundoff error the relation between 6 
0 8 16 24 32 40 

n 

Figure 3.-Convergence histones of problems 3 and 4. 

O,(n) and n for problems 1 to 4 are also represented by 
straight lines if the two-step method is used. The slope of each 
straight line is -loglo (1 - L' &n). 

The predictions given by equations (56) and (58) are 
confirmed by the numerical results shown in figures 2 and 3. 
The slopes of the upper two curves in figure 2 and all four 
curves in figure 3 agree with the predicted values for at least 
the first seven significant digits. (The accuracy of the 
computation is double precision on the IBM 370.) This is also 
true for the lower two curves in figure 2 before the roundoff 
error becomes dominant. Furthermore, these two curves 
quickly settle into horizontal lines as soon as the roundoff error 
becomes dominant. 

These numerical results indicate that the roundoff errors 
never grow during the entire convergence histories of problems 
1 to 4. This is also consistent with our theoretical development. 
Recall that a roundoff error introduced at any stage of the 
iterations can be considered as a linear combination of 

cp$y)'s. Because of the uniqueness condition (I-A12),the k=O 
and P=O component of this combination is annihilated during 
the next iteration. On the other hand, each of the remaining 
components is multiplied by either G ( k 3 e ) ( ~ * )  (one-step 
method) or @ k s P ) ( ~ * )  (two-step method) as the iteration 
number n increases-by 1. With the aid of equations (I-33), 
(I-35), (30), and (32), it can be shown that 

For problems 1 to 4, the acceleration factor t , (n)  defined 
in equation (45) is virtually equal to 
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(59) 

20 

before the roundoff error becomes dominant. The value of 4 ’ 
as well as the values of five other parameters are listed in the 
last six columns of table I. These parameters, according to 
equations (1-34) and (31), are related by the following limit 
equations: 

I 

lim loglo(Go) = loglo(G’) 
K.L- f m  

and 

lim ,$‘ = E(G’) 
K,L-  +m 

Note that the parameters on the left sides of equations (60) 
to (62) depend on the aspect ratio AylAx but not on the 
individual values of A x  and Ay. Thus, the variation of A x  and 
Ay is allowable as the integers K and L approach infinity as 
long as the ratio AylAx is held constant. Since AylAx = 1 for 
problems 1 to 8, one may expect that the values of the 
parameters on the left sides of equations (60) to (62) approach 
more closely to the values of the corresponding grid- 
independent parameters on the right sides as the values of K 
and L increase from K = L = 16 to K = L = 64. The values 
shown in table I confirm this expectation. 

As also shown in table I, the values of -loglo(Go) and 
-loglo(l - a, and thus the actual convergence rates of 
the one- ana two-step procedures, may be substantially 
underestimated by the values of -loglo(G’) and -loglo(c*), 
respectively, if b is relatively large, and K and L are relatively 
small. As a result the convergence rates tend to be more 
sensitive to the change of the integers K and L if the value 
of b l 6 c  is closer to 1. (See fig. 3.) 

For problems 5 to 8 the hij’s are specified according to 
equation (53). With this choice of the source term all Z?,(k9p’’s 
survive. As a result the relation between O,(n) and n for 
problems 5 to 8 are no longer represented by straight lines. 
However, as expected from theoretical considerations, the 
slope of any curve shown in figures 4 and 5 approaches either 
-loglo(Go) (one-step procedure) or -loglo [@(*)I (two-step 
procedure) before the roundoff error becomecd&nant. Note 
that ~(1’) = G’ if 8‘  = E’. 

The initial comparisons of the one- and two-step methods 
in regard to their ability to solve PDE’s with variable 
coefficients involve problems 1 to 17 of reference 1. The 
relative efficiencies of these two methods, measured in terms 

- -  

4 

8 
I c 

0 
- 
L 

12 

16 

1 Two-step method 
0 Problem 6 

0 

2 

- c 
0 
- 

L 

4 

Figure 5.-Convergence histories of problems 7 and 8. 

of the parameter ,$,(n) (eq. (45)), are given in table II. It is 
seen that (1) the convergence is accelerated, that is, 
[,(n) > 1, by the two-step procedure in only six test cases, 
and (2) without any exception, ,$,(n) is smaller than the 
corresponding theoretical parameter E(G”), and the 
discrepancy is rather large for the test problems with rapidly 
varying coefficients, that is, problems 13 to 15 of reference 1. 
These disappointing results, however, are not surprising 
because of the following considerations: (1) the technique of 
local relaxation, obviously, is less viable in the case of the 

I 

I 
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TABLE II.-VALUES OF €(e“) AND €,(n) FOR PROBLEMS 1 TO 17 
OF REFERENCE 1 

E(G”) 
.$(n) 

[For problems 1 to 5,  n = 10; for problems 6 to 15, n = 16; and for problems 16 
and 17, n = 5.1 

1 2 3 4 5  6 7 8 9 

1.234 1.237 1.228 1.234 1.236 1.402 1.403 1.394 1.403 
1.077 1.133 1 . 1 4 4  0.904 1.024 0.962 1.068 0.730 0.977 

I I  

t(G”) 
E,(n) 

~~ 

Problem 

Problem 

10 1 1  12 13 14 15 16 17 

1.403 1.402 1.289 1.289 1.289 1.289 1.336 1.367 
0.897 0.804 0.809 0.521 0.347 0.169 0.793 1.216 

(1-73) 
(1-73) 
(1-74) 

I 
One-step a0.8839 1.871 
Two-step a.8839 1.531 
One-step 9 .989  ,888 
Two-step 9 .989  1.050 
One-step 1.0 14.04 
Two-step 1.0 7.61 

I I I I I I I I I I I 

two-step procedure, and (2) the one-step method convergence 
rates associated with these test problems are all relatively high, 
and thus the advantage of using the two-step procedure is 
greatly reduced. 

To demonstrate that the two-step method could be 
substantially faster than the one-step method for the test 
problems with low one-step method convergence rate, 
problems 9 and 10 are introduced, which are modified versions 
of problems 16 and 17 of reference 1. The modification 
involves only the enlargement of the domain of equation (I-69) 
from 1 1 x 2 0  and l r y r O  to 1 . 5 2 ~ 1 0  and 1 . 5 r y r 0 .  A 
comparison between table I1 of reference 1 and table I n  of 
this report reveals that this simple modification results in a 
large reduction in the values of 0,(10) and thus the one-step 
method convergence rates. Furthermore, it can be seen that 
the two-step method, as indicated by the values of f,(5) and 
E,( lo), is indeed substantially faster than the one-step method 
for problems 9 and 10. 

Problems 18 and 19 defined in reference 1 are associated 
with a self-adjoint PDE (1-70) in which the coefficients p and 
q are identical. As noted in the section Local Relaxation, for 
these test problems the two-step method is inferior to the one- 
step method. 

The next test problems to be discussed are those defined 
in table I11 of reference 1. If the values of cola, used in the 
iterations are chosen according to equation (I-54), the 
computational efficiencies of the one-step and two-step 
methods are about equal, as shown in table IV. It is also shown 
that for the test problem associated with equation (1-74) the 
convergence rates are sharply reduced if cda, = 1 is assumed 
in the iterations. In this case the computational efficiency of 
the two-step method is about twice that of the one-step method. 

Finally, the one- and two-step methods are compared by 
using the three-dimensional test problem defined in the section 
Application to a 3-D Flow Problem of reference 1. As in 

TABLE 111.-VALUES OF KEY PARAMETERS FOR 
PROBLEMS 9 AND 10 I pro;; I cdao I OLIO) I H G ~ )  I  EA^) 1 t l ~ ~  

a0.1239 1.083 1.654 2.009 1.840 
%.I065 .928 1.698 1.741 1.745 

aEvaluated from eq. (1-54) 

TABLE IV.-VALUES OF KEY 
PARAMETERS FOR TEST 

PROBLEMS DEFINED 
IN TABLE III OF 

REFERENCE 1 

Equation Solution 1 1 method 1 1 2 ~ 

reference 1 it is assumed that p1 = p2 = 1 and p3 = 0.4135. 
The values of [,(4) obtained during the 25 passes through the 
inner loop range from 1.140 to 1.308, with the average being 
1.256. 

Concluding Remarks 
A two-step semidirect procedure was developed to accelerate 

the one-step procedure described in reference 1. The 

I 
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Finally, it should be emphasized that the development of 
the current one- and two-step procedures involves many bold 
assumptions. In future development it is hoped that the validity 
of these assumptions may be evaluated by using a rigorous 
matrix formulation. It is also hoped that the limitations imposed 
by these assumptions can be at least partially removed. 

acceleration may be substantial for elliptic problems which 
have low convergence rates with the one-step procedure. 

A key element in the development of the two-step procedure 
is to choose the coefficients a ' ,  b', and c' such that the 
convergence rate (in a sense defined in the section Analysis) 
can be maximized. This optimization problem is solved by 
equation (29). With the coefficients a', b', and c' so chosen 
a simple monotonic relation exists between the asymptotic 
error multiplication factors for the one- and two-step 
procedures. This relation not only enables us to establish the 
superiority of the two-step procedure compared with the one- 
step procedure, but also contributes greatly to the simplicity 
of the two-step procedure. 

Lewis Research Center 
National Aeronautics and Space Administration 
Cleveland, Ohio, February 6, 1986 
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Appendix-Mathematical Foundation for the section Analysis 

I 

The existence of the supremum _Cw defined in equation 
(25) is shown here. With the aid of equations (I-B18) and (18), 
equations (15), (21), and (24) imply that 

Since the upper bound of _C given in equation (Al) is 
independent of the integers Kind L, the existence of _Cw is 
established. 

To prove that (1) _Cm 2 _C' and (2) _Cw = _C' if and only 
if eq. (27) is satisfiedTthe foqowing Lemmas are established: 

- 

Lemma 1 

Let 

H ( V ~ , V ~ ) ~ Z ~ .  [ ( i ( ~ ~ ) ~  + t(v2)' + 26vlv2] 

where v1 and v2 are real variables satisfying 

Then the supremum H,, and the infimum Hmin of the 
function H over its domain exist. Furthermore, H- 123- > 0, 
and there exist real members v:, v;, v; , and v; , such that 

( V y  + (v2+)2 = ( V ; y  + (v# = 1 (A41 

and 

Proof 

Since H is continuous over a compact domain, H-, H-, 
v:, v;, v ; ,  and v 2  must exist. It follows from equations 
(1-4) and (16) that Hmx L Hmin > 0. 

Lemma 2 

Proof 

Let 

where sl, s2, t l ,  and t2 are real variables satisfying equations 
(I-B5) and (I-B7). Using equations ( l l ) ,  (12), (15), and 
(I-B13) to (I-B17), one concludes that 

- = _F(s,,sy,t,,ty) - (k,P) E * (A9) 

Furthermore, a comparison between equations (A2) and (A8) 
reveals that 

if v1 # 0 and v2 # 0 (A10) 

Let v1 and v2 be two given real numbers satisfying (1) 
(v$ + ( v ~ ) ~  = 1 ,  and (2) v1 # 0 and v2 # 0. Following a 
line of arguments (eqs. (I-B21) to (I-B31)), which was used 
in reference 1 to establish the existence of the integers KO and 
Lo, one can show that for any 6, > 0, 6, > 0, E, > 0, and 
e, > 0 there exists a pair of integers KO and Lo such that for 
any K 2 KO and L L Lo two integers k and P can be found to 
satisfy the requirements 

E ,  > t ,  - - I ,:I1 

Thus, in the case having v;' # 0, v; f 0, v, # 0, and 
v; # 0 equations (A9) and (A10) along with the continuity 
of the function Ecan be used to show that for any [ > 0 there 
exists a pair of-htegers K and L large enough that (k,P) E \k 
and (k',P') E !P can be found to satisfy the requirement 
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With the aid of equations (24) and (25), one concludes that 
inequality (A7) is true if v: # 0, v; # 0, v,- # 0, and v 2  Z 0. 
Since H(0, f 1) = ti.' = f0*'), and H( f 1,O) = cici ' = Y(~,'), - 
inequality (A7) is valid Kr all v:, v;, v;, and v c  Ghich 
satisfy equations (A4) to (A6). QED. 

Lemma 3 

Let 

(A1 1) 

where X1, X2, X i ,  and X; are given positive numbers. Then 
(1) The supremumf,, and the infmumf- of the function 

f over its domain exist, and fmax 2 fmin > 0. 

Proof 
Part (1) is obvious. To facilitate the proof of (2) and (3), 

Case 1. XIX; = X2X;.-For this case 
three exclusive cases are studied separately. 

f(e) = x,x;[x,e + h2(i - e)] - + - 
[:1 ,,,I 

and thus 

=f(l) = X2A; 1 2 e 1 0  

As a result 

Case 2. XIX; > X2Xi.-For this case Min r(O), f(l)] =f(O), 
and 

Case 3. X2X;>X1X;.-For this case Min If(O),f(l)J=f(l), 
and 

Lemma 4 

with the understanding that the equality sign is valid if and 
only if equation (27) is satisfied. 

Proof 

To proceed, the first quadratic form on the right side of 
equation (A2) is diagonalized (ref. 3) by using an orthogonal 
transformation 

and 

There exists an orthogonal matrix U such that 

0 = UDU-l and Df - = UD'U-' ('415) 

where D and D' are the matrices defined in equation (28). 
As a result the matrices 0' , like f i r ,  is positive definite; that 
is, 
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and 

Let 

Then equations (A12) and (A13) imply that 

H( _VI, 9) =_f((_V1)2) + 2b' VI Y 

x [hnax(1)1)2 + Ami"(l!2)21 (A 18) 

To proceed further, two exclusive cases, (1) & ' = 0 and (2) 
5' # 0, are studied separately. 

Case 1. b' = 0.-For this case E(  VI,^) = f((~1)~). 
With the aid of equations (A5), (A6), (A12) to (A16), (26), 
and (1-33) Lemma 3 implies that 

H,, 2 _C' 
Hmin - 

with the understanding that the equality sign is valid if and 
only if equation (27) is satisfied. 

Case 2. ' # &-For this case, equation (27) is violated 
since BO', and thus DD', can not be a scalar matrix. 
Furthermore, 

Thus, with the aid of Lemma 3 one concludes that 

Lemma 5 

Let sl, s2, t I ,  and f z  be real variables satisfying 
equations (I-B5) and (I-B7). Then 

A c '  2 - _F(S~,S~,~~,~~) 1 A 

if the matrices D and D' are related by equation (27). 
Lemma 5 is a special case of theorem 2 in reference 4. 

Lemmas 2 and 4 imply that (1) _Cm 2 _C' and (2) 
E" > E' if the condition (27) is vio1ated:On theother hand, 

condzion (27) is satisfied, Lemma 5 combined with 
equations (A9), (24), and (25) implies that _C' 2 _Cm. Thus, 
one concludes that _C' = _COD if and only ifconditzn (27) is 
satisfied. 

Finally, expressions (30) and (31) are shown as follows: If 
the matrices D and D' are related by equation (27) with A = 1, 
Lemmas 4 and 5 coupled with equations (A9) and (A10) imply 
that 

- 

- - 

- - E' = H,, 2 y(kvp) - 2 H,, = 1 (k,P) E * (A191 

(Eq. (A10) may be replaced by H(vI,v2)  = _F(vI,v2,0,0) if 
either v1 = 0 or v2 = 0.) Expression (30) foiiows directly 
from equation (A19). Furthermore, with the aid of expression 
(A19), equation (31) can be shown by using a line of arguments 
similar to that presented in the proof of Lemma 2. 
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